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Abstract. A ‘contact network’ modeling infection transmission comprises of
nodes (or individuals) that are linked when they are in contact that possibly
transmits an infection.    We here studied infection transmission on contact
networks of various degree distributionsscale-free, exponential and
constantunder SIRV model assuming susceptible, infected, removed and
vaccinated statuses of nodes.  Aiming for infectious disease containment within
the very early stage of spreading, we computed the minimum transmissibility at
which an infectious disease epidemic begins to emerge, and its change
according to mass preventive and ring post-outbreak vaccination.  In the most
degree-heterogeneous scale-free network, the ‘super-spreading’ by the hubs, or
high-degree nodes, allowed epidemics even for low transmissibility.  In
compensation, vaccination was much more efficient for the scale-free network.
We also found that basic reproductive number R0 defines a measurement of
epidemic emergence universally applicable to networks of various degree
distributions.  These results are significant for public health design.

Introduction

A ‘contact network’ modeling infection transmission comprises of nodes (or
individuals) that are linked when they are in contact that possibly transmits an
infection.  Here, the magnitude of the spreading of infection is determined not solely
by the infectiousness of the pathogen but also by the structure of the contact network.
In particular, a major factor is the distribution of each node’s ‘degree,’ which is the
number of nodes linked to it.  If all nodes have the same degree and the links between
nodes are random, there exists a threshold value in ‘transmissibility,’ the probability
that an infected node transmits the infection to a susceptible node in contact, less than
which an outbreak immediately extinguishes as an endemic [1].  On the other hand, if
there are a significant number of high-degree nodes, or hubs, such nodes can become
super-spreaders, and allow an outbreak even under weak transmissibility.  In fact, in
scale-free networks, which only have a power decrease in the number of high-degree
nodes, there remains a marginal number of stationary infected nodes under SIS model
(nodes transit between susceptible and infected), even for pathogens of infinitely
small transmissibility [2].  This phenomenon is typically observed as computer virus
infections in the Internet.



Vulnerability to infection attributable to the heterogeneous degree
distribution is applicable to contact networks of infectious diseases as well, thus can
become a concern for public health.  Although our knowledge on the contact network
of infectious diseases is limited, social networks can give some insight.  Sexual
contacts that follow the scale-free degree distribution [3] must be those with largest
degree-heterogeneity, whereas friendship relations that follow Gaussian distribution
[4] must include much less number of hubs.  Studies on such infections and their
containment are important both for existing diseases such as AIDS or SARS or for
those introduced deliberately by bioterrorism such as smallpox.

The primary measure for containing infection is vaccination, either
preventive or post-outbreak.  The epidemic mentioned above under SIS model in
scale-free networks cannot be stopped by preventive mass vaccination of randomly
selected nodes even of a large proportion, but can be halted by prioritized vaccination
of hub nodes [5, 6].  However, for vaccination in case of infectious diseases in human,
the latter hub vaccination is difficult to implement, because the contact network is not
apparent and potential hubs are not evident.  On the other hand, among post-outbreak
vaccination strategies, the one important in practice is the ring vaccination, in which
the susceptible individuals in contact with an infected individual are vaccinated.  Yet,
there has been no study evaluating the effectiveness of ring vaccination or its
combination with preventive mass vaccination, the two practical containment
strategies.  Moreover, for the study of infectious diseases in human a modeling more
realistic than the SIS is necessary.

Thus, we here studied infection transmission on contact networks of
various degree distributions under SIRV model assuming not only susceptible and
infected nodes, but also those removed (by death or acquiring immunity) and
vaccinated, and evaluated the effectiveness of mass preventive and ring post-outbreak
vaccinations.

Results

Aiming for infectious disease containment within the very early stage of spreading,
we studied the minimum transmissibility at which an infectious disease epidemic
begins to emerge, and its change according to contact networks or vaccination
strategies.  We generated random contact networks comprising of n=100,000 nodes
having average degree 〈k〉=10 with high-degree nodes decreasing by power (scale-free
network), exponentially (exponential network), or with all nodes having degree 〈k〉
thus with no high-degree nodes (constant network) (Figure 1).  Under no vaccination,
the scale-free network that has the largest heterogeneity of degree allowed epidemic
emergence even for transmissibility T=0.032, which was followed by T=0.087 for the
less heterogeneous exponential network, and then by T=0.111 for the homogeneous
constant network (Figure 2, Table 1).  This exhibits the vulnerability of degree-
heterogeneous contact networks to infection.
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Fig. 1. Cumulative frequency of nodes according to degree for scale-free, exponential and
constant networks of n=100,000 nodes with average degree 〈k〉= 10

Although the transmissibilities causing epidemic emergence were different
among the networks, the corresponding values of basic reproductive number R0 were
consistenly around one (Table 1).  This number R0 is defined as the expected number
of secondary infections among nodes in contact with a primary infected node and is
evaluated as R0 = (〈k2〉/〈k〉 – 1)T [7].  Whereas the transmissibility T basically defines
the pathogen’s biological strength for transmission, R0 indicates the strength of
spreading in a specific contact network, and reflects the degree distribution of the
network.  In particular, the value R0 can become large even under a small T, when the
degree distrubution is heterogeneous and 〈k2〉/〈k〉 is large.  Furthermore, we observed
the epidemic emergence to occur around R0=1 independently of the number of nodes
(see the case n=10,000 in Table 1) or the average degree (see the case 〈k〉=100).
These results indicate that basic reproductive number serves as a faithful indicator for
the emergence of epidemic independently of the degree distribution.
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Fig. 2. The number of removed nodes after infection simulation for scale-free, exponential and
constant networks of n=100,000 nodes with average degree 〈k〉=10 under various
transmissibility, and without vaccination.  Horizontal axis indicates the transmissibility T, and
vertical axis indicates the final number of removed nodes.  Data points for the scale-free
network are diamonds connected by lines, those for the exponential network are stars connected
by sparsely dashed lines, and those for the constant network are squares connected by densely
dashed lines.  Standard deviation of five experiments is indicated by a vertical error bar
centered at the mean point.  The transmissibility (interpolated in log scale) for which 100 nodes
are removed was defined as the epidemic emerging transmissbility, and the values for the three
networks are indicated by arrowed vertical lines of the same type as those connecting data
points

Table 1. Transmissibility T and basic reproductive number R0 causing emergence of epidemic
for various contact networks

mass
preventive

ring
T R 0 T R 0 T R 0

100,000 10 random 0% 0% 0.032 1.04 0.087 1.00 0.111 1.00
100,000 10 random 0% 25% 0.064 2.08 0.088 1.01 0.111 1.00
100,000 10 random 0% 50% 0.123 4.03 0.174 2.01 0.222 2.00
100,000 10 random 0% 75% 0.251 8.21 0.350 4.03 0.446 4.01
100,000 10 random 25% 0% 0.062 2.03 0.088 1.01 0.111 1.00
100,000 10 random 25% 25% 0.123 4.04 0.095 1.09 0.115 1.04
100,000 10 random 25% 50% 0.128 4.17 0.176 2.03 0.224 2.01
100,000 10 random 25% 75% 0.492 16.09 0.353 4.07 0.447 4.02
100,000 10 random 50% 0% 0.123 4.02 0.174 2.01 0.223 2.00
100,000 10 random 50% 25% 0.246 8.03 0.175 2.02 0.223 2.01
100,000 10 random 50% 50% 0.254 8.32 0.349 4.02 0.445 4.00
100,000 10 random 50% 75% 0.499 16.33 0.700 8.06 0.891 8.02
100,000 10 random 75% 0% 0.248 8.12 0.349 4.02 0.446 4.01
100,000 10 random 75% 25% 0.263 8.60 0.353 4.06 0.447 4.02
100,000 10 random 75% 50% 0.354 11.58 0.699 8.05 0.896 8.06
100,000 10 random 75% 75% 0.761 24.90 - - - -

10,000 10 random 0% 0% 0.075 2.03 0.088 1.02 0.112 1.01
100,000 100 random 0% 0% 0.003 1.04 0.008 1.00 0.012 1.18
100,000 10 hub 0% 0% 0.018 0.58 0.057 0.66 0.111 1.00

Dashes indicate absence of epidemic (even under T =1).
For each contact network, R 0 is calculated as R 0=(<k 2>/<k > - 1)T  (see text).

<k>n
scale-free constantexponentialvaccination

initial infection



Compensating the vulnerability of scale-free networks to weak
transmissibility, vaccination worked much effectively for such networks compared to
the exponential and constant networks.  We simulated for various ratio u of randomly
selected nodes preventively vaccinated (mass preventive vaccination) and ratio v of
susceptible status nodes in contact with an infected node to be vaccinated (ring
vaccination).  In exponential or constant networks, the transmissibility necessary to
cause emergence of epidmic was enlarged by the factor of 1/[(1–u)·(1–v)] compared
to the case without vaccination (Table 1).  This can be explained as vaccinations
decreasing the number of (susceptible) nodes around an infected node approximately
by the factor of (1–u)·(1–v).  In scale-free networks, on the other hand, the
transmissibility necessary for epidemic was observed to increase by a much larger
factor of 16u+v (Table 1).  For example, a pathogen of transmissibility T=0.018 could
emerge an epidemic under no vaccination, whereas the value arose to T=0.123 under
u+v=0.5.

Finally, we evaluated how the choice of initially infected node affects
epidemics.  An infection transmits faster when a high-degree node is infected initially
(say by hub targeted attack).   However, even in the extreme case when the largest-
degree node was initially infected, the transmissibility causing epidemic emergence
became smaller only by the factor of 0.56 for scale-free network and 0.66 for the
exponential, compared to the case when an initially infected node was selected
randomly (Table 1).

Discussion

The ‘super-spreading’ by the hubs in the scale-free networks had significant effect of
allowing epidemics even for low transmissibility.  The demonstrated vulnerability of
degree-heterogeneous contact networks under the SIRV model was in parallel to their
vulnerability under SIS model in which infected nodes were stationarily reserved even
for pathogens of weak infectiousness [2].  In compensation, vaccination turned out to
be much more efficient for the scale-free network thus still enabling infectious disease
containment in the very early stage of epidemics.  In addition, the consistent
measurement of epidemic emergence by basic reproductive number R0 among the
three types of networks indicated the appropriateness of the evaluation of
infectiousness by R0, which takes the degree heterogeneity into account.  Our results
could explain super-spreading caused simply by the structure of contact networks, but
other factors such as pathogens changing transmissbility by recombination within a
host, also can give accounts for super-spreaders.

Methods

Generating contact networks
We generated random contact networks of either n=10,000 or 100,000 nodes with
average degree either 〈k〉=10 or 100 for three types of degree distributions in order to



adjust the amount of hub nodes.  In the scale-free degree distribution, the number of
high-degree nodes decreased only by the power: the proportion of degree k nodes
among all nodes was set to be p(k) = (m2 k–3)/2 for k ≥ m/2, and p(k) = 0 otherwise.  In
the exponential degree distribution, the high-degree nodes decreased exponentially:
p(k) = (2e exp(–2k/m))/m again for k ≥ m/2, and p(k) = 0 otherwise.  As for the other
extremity, we tested the constant degree case, where all nodes had degree m, and there
were no hubs at all.  For each case, a contact network was generated by random
connection of edges: firstly nodes with various degrees according to the distribution
were listed, then ‘untied links’ emanating from each node by the number of its degree
were generated, and finally the ‘untied links’ were connected randomly.  The scale-
free network had the largest number of high-degree nodes, the exponential network
was in the medium, and the constant network had no such hubs (Figure 1).  The mean
squared degree 〈k2〉 =  Σk k2p(k) of the generated scale-free network was 279.5 for
(n=10,000, m=10), 336.9 for (n=100,000, m=10) and 33,701.1 for (n=100,000,
m=100), that of the exponential network was 125.0 for (n=10,000, m=10), 125.1 for
(n=100,000, m=10) and 12,499.1 for (n=100,000, m=100), and that of the constant
network was 100 for (m=10) and 10,000 for (m=100).

SIRV model
The nodes in our simulation had four possible statuses: susceptible, infected, removed
or vaccinated.  The simulation proceeds stepwise.  In each step, a portion of
‘susceptible’ nodes that are vaccinated change to ‘vaccinated.’  Then, each ‘infected’
node transmits the infection to a ‘susceptible’ node in contact, by converting its status
to ‘infected’ (in the next step) with probability T, the transmissibility.  Meanwhile, all
‘infected’ nodes are changed to ‘removed’ in the next step.  (The infected period is
one step, which corresponds to various periods in reality depending on infectious
diseases.)  Thus, nodes in status ‘removed’ or ‘vaccinated’ do not change their status
further.  The simulation becomes stable and terminates when there are no more nodes
in status ‘infected.’

Simulation of infection and vaccination
For various contact networks and values of transmissibility, we performed simulations
parameterized by the implemented rate of mass preventive and ring post-outbreak
vaccinations.  In the first step, 0, 0.25, 0.5 or 0.75 of the population was randomly
assigned the ‘vaccinated’ status (mass vaccination), one node among the remaining
was either randomly selected (random initial infection) or the highest-degree node
was selected (hub initial vaccination) to become an ‘infected’ node, and all of the
remaining nodes were set as ‘susceptible.’  In each of the following step, all of the
‘susceptible’ nodes in contact with an ‘infected’ node were listed, and either 0, 0.25,
0.5 or 0.75 of them were assigned the ‘vaccinated’ status (ring vaccination).  Each set
of simulation was repeated five times.  The parameters used for our simulation was R0
= 0.5, 1, 2, ..., 64, and the corresponding values for T, caclulated from the above
mentioned relation between R0 and T.  (The values of R0 differ widely according to
diseases: influenza has 1.7, SARS has 1.2–3.6, smallpox has 4–10, and measles have
17 [1].)
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