Circ J. (2022) 86:986

Clinical Implication of Smoking-Related Aryl-Hydrocarbon Receptor Repressor (AHRR) Hypomethylation in Japanese Adults

> Takeuchi F, Takano K, Yamamoto M, Isono M, Miyake W, Mori K, Hara H, Hiroi Y, Kato N National Center for Global Health and Medicine (NCGM) Supported by a grant (19A2004) from NCGM

> > JCS2023 @Fukuoka 2023.03.10–12

The authors have no financial conflicts of interest to disclose concerning the presentation.

Biomarker for smoking status/history

- Tobacco smoking is a leading preventable cause of morbidity and mortality.
 - Increases the risk for cardiovascular and respiratory disease, and cancer.

- Biomarker for long-term smoking behavior is needed.
 - Self-reporting is inaccurate.
 - Among current smokers, cotinine is a reliable measure of nicotine exposure, but its half-life is 15–24 hours.
- → Use DNA methylation of AHRR gene as a biomarker

DNA methylation

- DNA methylation controls gene transcription.
 - CpG in promoter is unmethylated
 → gene is activated
 - CpG in promoter is methylated
 - → gene is repressed
- DNA methylation is involved in many biological processes.
 - Cell differentiation, aging, cancer, other diseases ...

https://github.com/kdkorthauer/fungeno2019

DNA methylation of AHRR and smoking

- AHR, Aryl hydrocarbon receptor
 - Receptor of xenobiotics in tobacco smoke
 - Induces cytochrome P450mediated catabolism of the xenobiotics

- AHRR, Aryl hydrocarbon receptor repressor
 - Inhibits AHR
 - In smokers
 - DNA methylation is lower
 - mRNA expression is higher
- Previous studies were in epidemiology.
- ➔ We assess the feasibility as a biomarker in clinical practice.

Methods

• Study cohorts

	Panel 1	Panel 2	Panel 3
No. of individuals (F/M)	94 (29/65)	339 (47/292)	300 (155/145)
Age, yr	60.3 ± 1.2	67.8 ± 0.6	64.3 ± 0.7
Smoking habit			
Never, n (%)	39 (41%)	88 (26%)	145 (48%)
Former, n (%)	31 (33%)	169 (50%)	115 (38%)
Current, n (%)	24 (26%)	82 (24%)	40 (13%)
Complication			
Hypertension, n (%)	51 (54%)	259 (76%)	155 (52%)
Diabetes, n (%)	23 (24%)	131 (39%)	57 (19%)
Hypercholesterolemia, n (%)	45 (48%)	239 (71%)	300 (100%)
CAD, n (%)	46 (49%)	<mark>295 (87%)</mark>	9 (3%)

• Multi-omics measurements

- DNA methylation, epigenome-wide
 - Buffy coat
 - EPIC array in Panel 1
- DNA methylation at AHRR cg05575921
 - ddPCR in Panels 2&3
- mRNA expression of AHRR
 - Whole blood
 - qPCR in Panel 2
- SNP genotyping, genome-wide
 - OmniExpress in Panels 2&3

Epigenome-wide testing for association of DNA methylation with smoking status

Comparison of *AHRR* methylation between smoking statuses

 Significant differences in cg05575921 methylation between smoking statuses.

- cg05575921 hypomethylation gradually reverts with time since cessation.
- Inverse association between cumulative cigarette consumption and cg05575921 methylation.

DNA methylation of AHRR in current smokers

Conclusion

- Association of DNA methylation with smoking status was most significant at *AHRR* cg05575921.
- cg05575921 hypomethylation remained for a long period of time, >20 years, after smoking cessation.
 - ➔ Reversion of hypomethylation is a biomarker for smoking cessation.
- cg05575921 hypomethylation became evident from an early stage of smoking, <10 pack-years, among current smokers.

- DNA methylation is a new tool that could supplement selfreport or existing biomarkers for smoking.
- Our data not only contribute to basic science but also help improve the applications of DNA methylation signature to medical care of real-world patients.